DTU
Uddannelse
Forrige side | Gældende version Arkiv 2000/2001 
 
04901 Advanced Digital Signal Processing
Engelsk titel: Advanced Digital Signal Processing
Sprog: engelsk Point: 2,85
Type: kursus på phd-niveau, udbydes under åben uddannelse
Sprog: engelsk

Vejledende placering: Sidst i studiet.
Undervisningsform: Lectures, exercises (Matlab), short presentations by participants.
Evalueringsform Rapportaflevering
Karakter: 13-skala
Kontaktperson: Lars Kai Hansen, bygn. 321, tlf. 4525 3889, email lkh@imm.dtu.dk, http://eivind.imm.dtu.dk/staff/lkhansen/lkhansen.html
Jan Larsen, bygn. 321, tlf. 4525 3923, email jl@imm.dtu.dk, http://eivind.imm.dtu.dk/~jlarsen

Institut: Informatik og Matematisk Modellering
Kursusmål: Design of neural networks:
Lars Kai Hansen. The objective is to provide the participants with operational experience in neural net training and design of networks for simple pattern recognition tasks. Keywords are; feed-forward networks, learning algorithms, network pruning and cross-validation.

Signal processing with neural networks: Jan Larsen.
The objective is provide the participants with methods for design of neural networks for signal processing tasks including time series prediction and system identification. Keywords are; networks architectures, preprocessing, network training, validation and generalization.
Kursusindhold: Vector quantization with application to speech technology: Steffen Duus Hansen.
The purpose is to provide the participants with the necessary knowledge in order to design vector quantizers for different speech technology applications. Keywords are; the fundamentals of vector quantization, low rate speech coding (2-10 kbit/sec.), Hidden Markov Models, and speech recognition.

Adaptive signal processing, filter banks and wavelets: John Aasted Sørensen. The objective is to provide the participants with algorithms which constitute fundamental building blocks in adaptive signal analysis, separation, compression, and expansion. Keywords are; the stable fast transversal FIR filter (SFTF), singular value decomposition (SVD) and multiple signal classification (MUSIC) for signal separation and noise reduction, filter banks and wavelets for analysis and synthesis.